Climate Adaptation + Mitigation Strategies: Pursuing Implementation Pilots

Symposium and Workshop Executive Summary March 2014

At the Building Climate Solutions 14th National Conference and Global Forum on Science, Policy and the Environment Conference held in Washington DC this past January, the Center for Clean Air Policy partnered with the U.S. Global Climate Research Program’s National Climate Assessment Program to host “Climate Adaptation + Mitigation Synergies: Pursuing Implementation Pilots” symposium and workshop.

The Climate Adaptation + Mitigation Synergies sessions were designed to identify innovative partnerships for the implementation of Adaptation + Mitigation (A+M) pilot projects in 2014. Together we asked the Climate Question: How can we maximize the return on our infrastructure and climate investments – mitigation and adaptation – while also maximizing the economic, social, and environmental benefits?

The “A+M” sessions enabled local practitioners and decision makers at all scales to learn about best practices and discuss opportunities for achieving synergies among actions that both cut carbon pollution (mitigation) and prepare for and respond to climate impacts (adaptation). Panelists (1) reviewed the current and planned state of practice on integrating mitigation and adaptation, (2) identified actionable research and information needs, and (3) explored policy and implementation opportunities.

Included here are brief highlights on pilot project and policy opportunities; key lessons learned; research and capacity building needs; and finally stakeholder engagement recommendations.

Symposium panelists from Left to Right: Steve Winkelman, Emily Seyller, Clay Nesler, & Susan Ruffo.
Pilot Project Opportunities
The following project opportunities rose to the top as areas ripe to pursue in Washington, DC and Boston, MA:

- Adding resilience measures to green building projects, codes and policies.
- Installing Combined Heat and Power (CHP) in “Meds & Eds” community (hospital & university campuses) as a first step toward microgrids.
- Targeting green infrastructure and cool roofs to maximize cooling and water capture.

Policy Opportunities
The group highlighted four main policy opportunities:

- Whitehouse Council on Environmental Quality (CEQ): assess and provide input on A+M in the Resilience Toolkit and the Climate Preparedness Task Force;
- Federal Energy Regulatory Commission (FERC) and International Organization for Standardization (ISO): modify policies to facilitate microgrids;
- Property Assessed Clean Energy (PACE): integrate resilience into PACE (Connecticut is starting this); and
- Stormwater fees and trading facility: follow DC’s model to raise funding for green infrastructure.

Key Lessons
The group discussion focused-in on four key lessons learned:

(1) **Speak in terms people understand:**
- “Green” and “Resilient” is less wonky than “Mitigation” and “Adaptation”.

(2) **Follow the Money:**
- Ask the Climate Question for your next major investment: does it help to cut carbon pollution while also preparing for and responding to climate impacts?
• Connect the Dots: that is, if you’re investing in mitigation consider how you can increase adaptation benefits; and vice versa in order to increase return on climate and infrastructure investments and maximize co-benefits.

(3) Understand Drivers and Barriers:
• Learn why decisions are being made (regulations, markets, competitiveness, quality of life).

(4) Look for Maximizing “Accidental” and “Intentional Resilience”:
Clay Nesler’s memorable phrase “Accidental Resilience” illustrates how many solutions aren’t driven by climate concerns, for example:
• DC Water is installing CHP for environmental compliance, but will enjoy major cost savings, increased energy resilience and enhanced reliability.
• CHP and building efficiency measures motivated by cost savings can lead to energy resilience.
• “Intentional Resilience”, on the other hand, is when we plan ahead and use common sense to avoid conflicts and maximize synergies.

Research Needs
The group underscored three main research needs:
• Broad economic analysis that includes business continuity benefits, energy savings and ecosystem services.
• Measuring resilience at different scales: building, neighborhood scale, infrastructure, and city.
• How to scale up from pilots to city-wide and regional resilience.

Capacity Building Needs
During our session and workshop we heard two main needs:
• City governments need energy planning experts for future resilience; and
• Foundations could support embedded staff in city agencies and community groups.

Communication and Stakeholder Engagement
The group discussed three stakeholder engagement recommendations:
• Make the business and economic competitiveness case for resilience supported by economic data and success stories.
• Local power generation and microgrids can “empower” communities.
• The incremental cost of good design for new construction is often minimal, whereas the opportunity costs of not preparing are high.